Himpunan

A.   Pengertian Himpunan
     Konsep himpunan mendasari hampir semua cabang matematika. Gerorg Cantor  dianggap sebagai  Bapak teori himpunan. Himpunan adalah kumpulan benda atau objek-objek atau lambang-lambang yang mempunyai arti yang dapat didefinisikan dengan jelas mana yang merupakan anggota himpunan dan mana bukan anggota himpunan. Istilah didefinisikan dengan jelas dimaksukkan agar orang dapat menentukan apakah suatu benda merupakan anggota himpunan yang dimaksud tadi atau tidak.

Perhatikan objek yang berada di sekeliling kita, misal ada sekelompok mahasiswa yang sedang belajar di kelas A, setumpuk buku yang berada di atas meja belajar, sehimpunan kursi di dalam kelas A, sekawanan itik berbaris menuju sawah, sederetan mobil yang antri karena macet dan sebagainya, semuanya merupakan contoh himpunan dalam kehidupan sehari-hari.
     
Jika kita amati semua objek yang berada disekeliling kita yang dijadikan contoh di atas, dapat didefinisikan dengan jelas dan dapat dibedakan mana anggota himpunan tersebut dan mana yang bukan.Himpunan makanan yang lezat, himpunan gadis yang cantik dan himpunan bunga yang indah adalah contoh himpunan yang tidak dapat didefinisikan dengan jelas. Lezatnya makanan, cantiknya gadis dan indahnya bunga bagi setiap orang relatif. Lezatnya suatu hidangan bagi seseorang atau sekelompok orang  belum tentu lezat bagi orang lain atau sekelompok orang lainya.
     
 Demikian juga indahnya sekuntum bunga bagi seseorang belum tentu indah bagi orang lain. Bagi A yang indah adalah mawar merah bagi B yang indah adalah melati. Jadi relatif bagi setiap orang. Benda atau objek yang termasuk dalam himpunan disebut anggota atau elemen atau unsur himpunan tersebut. Umumnya penulisan himpunan menggunakan huruf kapital A, B, C dan seterusnya, dan anggota himpunan ditulis dengan huruf kecil.

B.   Jenis-Jenis Himpunan
1.    Himpunan Bagian (Subset).
Himpunan A dikatakan  himpunan  bagian  (subset)  dari  himpunan B ditulis A  B ”, jika setiap anggota A merupakan anggota dari B.
Syarat :
 B, dibaca : A himpunan bagian dari B
 B, dibaca : A bukan himpunan bagian dari B
B    A dibaca : B bukan himpunan bagian dari A
B    A dibaca : B bukan himpunan bagian dari A
Contoh :
Misal   A = { 1,2,3,4,5 } dan B = { 2,4} maka  B  A
Sebab  setiap  elemen  dalam  B merupakan  elemen  dalam A,  tetapi  tidak sebaliknya.
Penjelasan : Dari definisi diatas himpunan bagian harus mempunyai unsur himpunan A  juga merupakan unsur himpunan B.artinya kedua himpunan itu harus saling berkaitan.
2.    Himpunan Kosong (Nullset)
Himpunan kosong adalah himpunan yang tidak mempunyai unsur anggota yang sama sama sekali.
Syarat :
Himpunan kosong = A atau { } Himpunan kosong adalah tunggal
Himpunan kosong merupakan himpunan bagian dari setiap himpunan
Perhatikan : himpunan kosong tidak boleh di nyatakan dengan { 0 }.
Sebab : { 0 } ≠ { }
Penjelasan : dari definisi diatas himpunan kosong adalah himpunan yang tidak mempunyai satupun anggota, dan biasanya himpunan kosong dinotasikan dengan huruf yunani ø (phi).
3.    Himpunan Semesta
Himpunan semesta biasanya dilambangkan dengan “U” atau “S” (Universum) yang berarti himpunan yang memuat semua anggota yang dibicarakan atau kata lainya himpunan dari objek yang sedang dibicarakan.
4.    Himpunan Sama (Equal)
Bila setiap anggota himpunan A juga merupakan anggota himpunan B, begitu pula sebaliknya.dinotasikan dengan A=B
Syarat : Dua buah himpunan anggotanya harus sama.
Contoh :
A ={ c,d,e}    B={ c,d,e }   Maka A = B
Penjelasan : Himpunan equal atau himpunan sama,memiliki dua buah himpunan yang anggotanya sama misalkan anggota himpunan A {c,d,e} maka himpunan B pun akan memiliki anggota yaitu { c,d,e }.
5.    Himpunan Lepas
Himpunan lepas adalah suatu himpunan yang anggota-anggotanya tidak ada yang sama.
Contoh  C = {1, 3, 5, 7}   dan  D = {2, 4, 6}  Maka himpunan C dan himpunan D saling lepas.
Catatan : Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satu pun anggota yang sama
6.    Himpunan Komplemen (Complement set)
Himpunan komplemen dapat di nyatakan dengan notasi AC . Himpunan komplemen jika di misalkan S = {1,2,3,4,5,6,7} dan A = {3,4,5} maka A  U. Himpunan {1,2,6,7} juga merupakan komplemen, jadi AC = {1,2,6,7}. Dengan notasi pembentuk himpunan ditulis :
AC = {x│x Є U, x Є A}
7.    Himpunan Ekuivalen (Equal Set)
Himpunan ekuivalen adalah himpunan yang anggotanya sama banyak dengan himpunan lain.
Syarat : Bilangan cardinal dinyatakan dengan notasi n (A) A≈B, dikatakan sederajat atau ekivalen, jika himpunan A ekivalen dengan himpunan B,

Contoh :
A = { w,x,y,z }→n (A) = 4
B = {  r,s,t,u   } →n  (B) = 4
Maka n (A) =n (B) →A≈B
Penjelasan : himpunan ekivalen mempunyai bilangan cardinal dari himpunan tersebut, bila himpunan A  beranggotakan 4 karakter maka himpunan B pun beranggotakan 4.

C.   Cara Penulisan Himpunan
Ada empat cara untuk menyatakan suatu himpunan
1.    Dengan menyebutkan semua anggotanya (roster) yang diletakkan di dalam sepasang tanda kurung kurawal, dan di antara setiap anggotanya dipisahkan dengan tanda koma. Cara ini disebut juga cara Tabulasi.
Contoh:     A = {a, i, u, e, o}
B = {Senin, Selasa, Rabu, Kamis, Jumat, Sabtu, Minggu}
2.    menyebutkan syarat anggota-anggotanya, cara ini disebut juga cara Deskripsi.
Contoh: ambil bilangan asli kurang dari 5
A = bilangan asli kurang dari 5
3.    Notasi Pembentuk Himpunan : dengan menuliskan ciri-ciri umum atau sifat-sifat umum (role) dari anggotanya.
Contoh Soal :
Nyatakan dengan notasi himpunan dengan menuliskan tiap-tiap anggotanya dan sifat-sifatnya himpunan berikut ini :
A adalah himpunan bilangan asli antara 1 dan 6
Penyelesaian :
A adalah himpunan bilangan asli antara 1 dan 6
Dengan menulis tiap-tiap anggotanya A = {2, 3, 4, 5}
Dengan menulis sifat-sifatnya A = {x | 1 < x <  Asli}Î6, x 
4.    Himpunan juga dapat di sajikan secara grafis (Diagram Venn)
Penyajian himpunan dengan diagram Venn ditemukan oleh seorang ahli matematika Inggris bernama John Venn tahun 1881. Himpunan semesta digambarkan dengan segiempat dan himpunan lainnya dengan lingkaran di dalam segiempat tersebut.

D.   Operasi Pada Himpunan
1.    Gabungan
Gabungan (union) dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota himpunan A atau himpunan B.  Dinotasikan A  B Notasi : A   B = {x | x Є A atau  x Є B}
2.    Irisan
Irisan (intersection) dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota dari himpunan A dan anggota himpunan B.
Notasi : A   B = {x | x Є  A dan x Є B}
3.    Komplemen
Komplemen himpunan A terhadap himpunan semesta S adalah himpunan yang anggotanya merupakan anggota S yang bukan anggota A. Dinotasikan Ac
    Notasi : Ac = {x | x Є S dan  x Є A} atau
4.    Selisih
Selisih himpunan A dan B adalah himpunan yang anggotanya merupakan anggota himpunan A dan bukan anggota himpunan B. Selisih himpunan A dan B adalah komplemen himpunan B terhadap himpunan A. Dinotasikan A-B
Notasi : A – B = {x | x Є A dan  x Є B}
5.    Hasil Kali Kartesius ( cartesion Product )
Hasil kali kartesius himpunan A dan B, dinotasikan A x B, adalah himpunan yang anggotanya semua pasangan terurut (a,b) dimana a anggota A dan b anggota B
Secara matematis dituliskan : A x B = {(a,b)| a Є A dan b Є B}

E.   Hukum Aljabar Himpunan
      Hukum-hukum pada himpunan dinamakan Hukum –hukum aljabar himpunan. cukup banyak  hukum yang terdapat pada aljabar himpunan , tetapi disini hanya dijabarkan  11 saja. Beberapa hukum tersebut mirip dengan hukum aljabar pada sistem bilangan riil seperti a (b+c) = ab + ac  , yaitu hukum distributif.
1.   Hukum identitas:
    A = A
    A U = A
2.   Hukum null/dominasi:
    A =
    A U = U
3.   Hukum komplemen:
    A  = U
    A  =
4.   Hukum idempoten:
    A A = A
    A A = A
5.   Hukum involusi:
    = A
6.   Hukum penyerapan (absorpsi):
    A (A B) = A
    A (A B) = A
7.   Hukum komutatif:
    A B = B A
    A B = B A
8.   Hukum asosiatif:
    A (B C) = (A B) C
    A (B C) = (A B) C
9.   Hukum distributif:
    A (B C) = (A B) (A C)
    A (B C) = (A B) (A C)
10. Hukum De Morgan:
     =
     =
11.  Hukum 0/1
     = U
     = Æ
Terlihat bahwa hukum- hukum yang berlaku pada himpunan merupakan analogi hukum –hukum logika , dengan operator  menggantikan L (dan) , sedangkan operator    menggantikan V ( atau ).
Contoh Penerapan Soal Himpunan Dalam Kehidupan Sehari-Hari
Berikut ini merupakan beberapa contoh kasus teori himpuanan dalam kehiupan sehari-hari.
Soal:
1.    Dalam sebuah kelas terdapat 40 orang siswa, 24 orang gemar musik 30 orang gemar olah raga dan 16 orang gemar keduanya. Tentukan banyaknya siswa yang gemar musik saja dan yang gemar olahraga saja?
2.    Dari survey 100 orang warga terdapat 60 orang gemar membaca 50 orang gemar menulis, 45 orang gemar melukis, 40 orang gemar melukis dan menulis, 35 orang gemar membaca dan melukis, 30 orang gemar ketiganya. Tentukan :
a)  Orang yang gemar melukis dan menulis saja
b)  Orang yang gemar membaca dan melukis saja
c)  Orang yang gemar membaca saja
d)  Orang yang gemar menulis saja
e)  Orang yang gemar melukis saja
f)   Orang yang tidak suka ketiganya
Penyelesaian:
1.    Perhatikan dalam soal tersebut terdapat dua himpunan siswa  yaitu siswa yang gemar musik dan siswa yang gemar olahraga. Siswa yang gemar keduanya sebanyak 16 orang. Dalam konsep himpunan, anggota yang gemar keduanya merupan anggota irisansehingga dapat dicari siswa yang gemar musik saja dan siswa yang gemar olahraga saja.
Karena irisan siswa yang gemar keduanya sebanyak  16 orang sehingga siswa yang hanya gemar Musik dan olah raga saja yaitu :
Musik = 24 – 16 = 8
Olahraga = 30 – 16 = 14
Dengan demikian  himpunan semestanya :
S = 8 + 14 +16 = 40 siswa.
2.    Dari soal nomor 2, terdapat tiga himpunan yang berbeda yaitu yang gemar membaca, menulis dan melukis. Untuk menyelesaikan soal tersebut, terlebih dahulu kita  cari irisan ketiganya. Sehingga dapat disimpulkan :
Misal : B = Membaca, N = Menulis, L = Melukis
a)    Orang yang gemar melukis dan menulis saja: 40 – 30 = 10 orang
b)   Orang yang gemar membaca dan menulis saja: 35 – 30 = 5 orang
c)    Orang gemar membaca saja: 60 – 30 – 5 = 25 orang
d)   Orang yang gemar menulis saja: 50 – 30 – 10 = 10 orang
e)    Orang yang gemar melukis saja: 45 – 45 = 0, maka orang yang gemar melukis saja merupakan himpunan kosong

f)     Orang yang tidak suka ketiganya: 100 – 25 – 30 – 5 – 10 – 10 = 20 orang

Komentar

Postingan populer dari blog ini

SERVICE MANAJEMEN | APA DAN BAGAIMANA MANAJEMEN LAYANAN

RINGKASAN MANAJEMEN LAYANAN SISTEM INFORMASI

Qbasic (koreksi)